
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 294 (2006) 249–268

www.elsevier.com/locate/jsvi
Nonlinear semi-passive multimodal vibration damping:
An efficient probabilistic approach

D. Guyomar, A. Badel�
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Abstract

This paper deals with the synchronized switch damping (SSD) technique, a semi-passive approach developed to address

the problem of structural vibration damping. This technique takes advantage of an original nonlinear processing of the

voltage generated by piezoelements. It was shown that the original control law for the SSD technique was optimal in the

case of monomodal excitations. In the case of wide band multimodal excitation it is not true anymore. This paper proposes

a novel multimodal control law for the SSD technique. It is based on a probabilistic description of the piezovoltage and

results in an optimization of the energy dissipated in the nonlinear device connected to the piezoelectric elements.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of structural vibration damping in many industrial sectors such as automobile, aerospace,
sports equipment, measurement devices, etc., has instigated a sharp increase in research in the area of
vibration control. In this field, much research has been devoted to piezoelectric vibration control device.
Piezoelectric materials are solid state, reliable and of lightweight. They possess relatively high bandwidths and
consume relatively small amounts of power. These properties are ideal for operating the materials as sensors,
actuators or both sensor and actuator. Piezoelectric materials are embedded or bonded on the vibrating
structure. When the structure vibrates, the piezoelectric elements are stressed and convert part of the
mechanical energy by piezoelectric effect. Degradation or transfer of this energy results in control and
reduction of the vibration. For active vibration control, a complex system built with at least a sensor, a control
unit and a feedback actuator is necessary. In addition, external power sources and amplifier are needed for the
control unit and the actuators. The passive techniques can be more easily integrated because of their simplicity
and their compactness. The piezoelectric elements are connected to a specific electrical network consisting of a
dissipative shunt [1]. The most effective method is the tuned shunt where a circuit made with an inductor and a
resistor in series is connected to the capacitance of the piezoelements. Optimal damping is obtained by tuning
the electrical resonance on the frequency of the structural mode to be damped. This method gives good results
but has the following disadvantages: For low-frequency modes, the optimal value of the inductor is very large
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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and requires active circuitry. Moreover, it is sensitive to environmental factors such as temperature and
acoustic load, which cause drift in the structure’s resonance frequencies. Once detuned, the shunt circuit looses
its damping performance. Finally, mutimodal damping requires the use of complex shunt circuits [2].

To bypass these drawbacks, several semi-passive or active–passive techniques have been proposed. In the
solid-state tunable piezoelectric absorber developed by Davis and Lesieutre [3], a passive capacitive shunt
circuit is used to electrically adjust the piezoelements effective stiffness and then tune the device resonance
frequency. In the approach proposed by Morgan and Wang [4], an adaptive inductor tuning, a negative
resistance and a coupling enhancement set-up lead to a system with multimodal damping ability.

More recently, switched shunt techniques have been developed introducing a nonlinear approach by
changing the piezoelement properties or boundary conditions synchronously with the structure motion. The
state-switching method proposed by Clark [5] is a variable stiffness technique in which piezoelements are
periodically held in the open-circuit state then switched and held in the short-circuit state, synchronously with
the structure motion. Cunefare successfully adapted previous works of Larson et al. [6] on the state-switching
concept to vibration damping in a rather different way and proposed the state-switching absorber (SSA) [7].

This paper deals with a particular nonlinear technique which is known as SSD for synchronized switch
damping [8–10]. It consists in a nonlinear processing of the voltage on piezoelectric elements bonded on the
structure. It is implemented with a simple switch driven during short periods synchronously with the structure
motion. The switch connects the piezoelement to a circuit which can be either a simple short circuit (SSDS) or
a small inductor (SSDI). It was shown that the original control law governing this technique was optimal for
single-frequency excitations [10]. Corr and Clark proposed a multimodal approach which consists in selecting
the modes to be controlled and insuring a negative rate of energy change in the selected modes of the structure
[11]. They showed at the same time that the original SSD control law was not optimal in the case of wide band
multimodal excitation. This paper presents a new control law for the SSD techniques based on the idea of
maximizing the energy dissipated in the nonlinear processing device connected to the piezoelectric elements. It
is derived from a probabilistic description of the piezovoltage. Since the SSDI technique is more efficient than
the SSDS technique, we mainly focused on this technique in the present paper, but the probabilistic approach
is also valid for the SSDS.

A multimodal modelling of a clamped–free beam with piezoelectric elements is presented in Section 2. It is
based on the model developed by Sodano et al. to address piezoelectric energy harvesting problem [12]. The
different control laws are detailed in Section 3. Simulations results are given and discussed in Section 4.

2. Modelling

A typical vibrating beam damped by the action of piezoelectric elements is considered, as shown in Fig. 1.
The beam is clamped at one end in a rigid structure and piezoelectric inserts are bonded on its surface close to
the clamped end where the bending radius is a minimum. In the considered case, the piezoelectric elements are
massive ceramics whose poling directions are perpendicular to the beam. It is then the lateral coupling k31
which mainly drives the piezoelectric response. This approach can also be generalized to composite
piezoelectric inserts where the poling direction may be horizontal. The two piezoelectric elements are
electrically connected in parallel. The ground is set to the electrical potential on the piezoelectric elements
surfaces in contact with the beam. The characteristics of the beam and of the piezoelectric elements are
summarized in Table 1.

It is assumed that the structure acts as pure Euler–Bernoulli beam, the stress T and the strain S in the
structure are then essentially longitudinal (along the x-axis). The electric field E is purely along the y-axis, and
z 
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Fig. 1. Vibrating beam with piezoelectric elements.
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Table 1

Structure characteristics

Structure width b

Beam length L

Beam volume VB

Beam density rB

Beam stiffness cB

Piezoelements length Lp

Piezoelements thickness ep

Piezoelements volume VP

Piezoelements density rP

Short-circuit piezoelements stiffness cE
P

Open-circuit piezoelements stiffness cD
P

Piezoelements clamped permittivity eS

Piezoelectric coefficient e
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so is the electrical displacement D. The piezoelectric constitutive equations are then given by Eq. (1), where cE
P

is the longitudinal elastic stiffness of the piezoelements when they are short circuited, eS is their clamped
permittivity and e the piezoelectric coefficient. In the beam, the relationship between stress and strain is given
by Eq. (2), where cB is the longitudinal elastic stiffness of the beam.

Tx

Dy

" #
¼

cE
P �e

e eS

" #
Sx

Ey

" #
, (1)

Tx ¼ cBSx. (2)

In order to give a simple multimodal lumped model for the cantilever beam with piezoelectric elements, some
assumptions must be made. The first assumption is that the motion time and space variables can be separated.
The displacement of the beam can thus be written as the summation of modes in the beam and a temporal
coordinate. This is shown in Eq. (3), where fjðxÞ is the mode shapes of the structure, rjðtÞ the corresponding
temporal coordinate and N the number of mode included in the analysis. The mode shape determination can
be done assuming that the structure is homogeneous along the x-axis and using typical analytical mode shape
for Euler–Bernoulli beams, or using FEM software. The second assumption is the Euler–Bernoulli one, which
allows the strain in the structure to be the product of the distance from the neural axis and the second spatial
derivative of the displacement along the beam, which is summarized in Eq. (4). The last assumption is that the
electric field along the thickness of the piezoelements is constant and linked to the piezovoltage V by Eq. (5).

uðx; tÞ ¼
XN

j¼1

fjðxÞrjðtÞ, (3)

Sx ¼ �yu00ðx; tÞ ¼ �y
XN

j¼1

f00j ðxÞrjðtÞ; (4)

Ey ¼ �
V

ep

for y40,

Ey ¼
V

ep

for yo0. ð5Þ

It is considered that the structure is driven by a punctual force F, at the abscissa xF. Using previous
assumptions, it was shown [12] that the constitutive equations of the system, governing the displacement of the
structure and its electrical behaviour can be expressed by Eqs. (6) and (7). The different parameters and
variable of these equations are detailed in Tables 2 and 3, respectively. The jth equivalent damper Cj is
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Table 2

Parameters of the model

Main parameters

jth beam dynamic mass MBj ¼ rB

Z
VB

fjðxÞ
2 dV B

jth piezoelements dynamic mass MPj ¼ rP

Z
VP

fjðxÞ
2 dV P

jth beam equivalent stiffness KBj ¼ cB

Z
VB

y2f00j ðxÞ
2 dVB

jth short-circuit piezoelements equivalent stiffness KE
Pj ¼ cE

P

Z
VP

y2f00j ðxÞ
2 dV P

jth macroscopic piezoelectric coefficient
aj ¼ e

Z
VP

y
�� ��
eP

f00j ðxÞ dVP

jth force coefficient bj ¼ fjðxF Þ

Piezoelements clamped capacitance C0 ¼ 2
eSLPb

eP

Derived parameters

jth open-circuit piezoelements equivalent stiffness
KD

Pj ¼ cD
P

Z
VP

y2f00j ðxÞ
2 dV P ¼ KE

Pj þ
a2j
C0

jth short-circuit resonance frequency
oE

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KSj þ KE

Pj

MSj þMPj

s

jth open-circuit resonance frequency
oD

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KSj þ KD

Pj

MSj þMPj

s

jth squared coupling coefficient
k2

j ¼
ðoD

j Þ
2
� ðoE

j Þ
2

ðoD
j Þ

2
¼

a2j
ðKSj þ KD

PjÞC0

jth equivalent damper

Cj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKSj þ KD

PjÞðMSj þMPjÞ

q
Qmj

Table 3

Variables of the model

Piezoelements voltage V

Piezoelements outgoing current I

jth displacement temporal coordinate rj
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deduced from the other parameters of the model and from the mechanical quality factor Qmj associated to the
jth mode, as shown in Table 2.

8j ¼ 1 . . .N ðMSj þMPjÞ€rj þ ðKSj þ KE
PjÞrj þ Cj _rj � ajV ¼ bjF , (6)

I ¼
XN

j¼1

aj _rj � C0
_V . (7)
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A cantilever beam with piezoelectric elements can then be modelled by the sum of mechanical oscillators
corresponding to each resonance frequency of the structure. The displacement of the dynamic mass of the jth
oscillator is rj. Without piezoelectric elements, the motion of the different mechanical oscillators would be
perfectly independent and unique functions of the driving force. It is the electromechanical properties of the
piezoelectric elements which links the motion of the different mechanical oscillators to the voltage. It is here
pointed out that a nonlinear processing of the piezovoltage may affect all modes of the structure.

3. Control Laws

3.1. Energetic analysis

It is considered that an electrical circuit is connected to the piezoelectric elements. This device is designed to
have a damping effect on the structure. The global energy equation (8) is the summation of the N energy
equations associated to each mode by multiplying both sides of Eq. (6) by the speed and integrating over the
time variable. The provided energy EP is divided into the mechanical energy EM (kinetic+elastic), the viscous
losses EV, and the transferred energy ES which corresponds to the part of mechanical energy which is
converted into electrical energy. These energies are summarized in Table 4.

Multiplying both terms of Eq. (7) by the voltage and integrating over the time variable shows that the
transferred energy is the sum of the electrostatic energy stored on the piezoelectric elements and the energy
absorbed by the connected electrical device. The electrical output power can then be considered as losses when
the time integral of VI is positive. In the case of vibration damping, the electrical device connected to the
piezoelectric elements is then designed to maximize its own consumption. A new energetic equation (9) can
then be given, expressing the provided energy as the sum of the kinetic energy Ekin, the potential energy Epot

(electrostatic+elastic) and the dissipated energy ED (viscous losses+energy consumed in the electrical device).
These energies are detailed in Table 5.

EP ¼ EM þ EV þ ES, (8)

EP ¼ Epot þ Ekin þ ED. (9)

3.2. SSDI basics

This paper deals with a particular nonlinear technique which is known as SSDI for Synchronized Switch
Damping on Inductor [8–10]. This nonlinear damping technique consists of adding a switching device in
parallel with the piezoelectric elements. It allows to briefly inverse the piezovoltage at selected instants. This
device is composed of a switch and an inductance LI connected in series. The switch is almost always open. It
Table 4

Energetic terms #1

Provided energy
EF ¼

XN

j¼1

bj

Z t

0

F _rj dt

Mechanical energy
EM ¼

1

2

XN

j¼1

ðMSj þMPjÞ_r
2
j þ

1

2

XN

j¼1

ðKSj þ KE
PjÞr

2
j

Viscous losses
EV ¼

XN

j¼1

Cj

Z t

0

_r2j dt

Extracted energy
ES ¼

XN

j¼1

aj

Z t

0

_rjV dt ¼
1

2
C0V2 þ

Z t

0

VI dt
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Table 5

Energetic terms #2

Kinetic energy
Ekin ¼

1

2

XN

j¼1

ðMSj þMPjÞ_r
2
j

Potential energy
Epot ¼

1

2

XN

j¼1

ðKSj þ KE
PjÞr

2
j þ

1

2
C0V2

Dissipated energy
ED ¼

XN

j¼1

Cj

Z t

0

_r2j dtþ

Z t

0

VI dt

t 

V

uu.

I 

IL

Fig. 2. SSDI device and voltage and displacement typical waveforms for a sinusoidal excitation.

t      t

ti

V

u

V(after)

V(before)

Fig. 3. Piezoelement voltage inversion.
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is briefly closed at selected instants. The capacitance C0 of the piezoelectric elements and the inductance LI

constitute then an oscillator. The switch is kept closed until the voltage V on the piezoelectric elements has
been inversed. It corresponds to a time ti equal to a semi-pseudo-period of the electric oscillator, as shown in
Eq. (10). The lower the inductance LI, the shorter will be ti. Thus, this technique does not require a high
inductance value. Practically, the inductance is chosen to get an inversion time roughly between 20 and 50
times lower than the shortest mechanical vibration period.

ti ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
LI C0

p
. (10)

When the switch is open and if no load is connected, the outgoing piezocurrent is null and then the voltage and
the displacement vary proportionally. The voltage and displacement typical waveforms are shown in Fig. 2 in
the case of a sinusoidal excitation and when the voltage inversion instants correspond to the displacement
extrema. The voltage inversion is detailed in Fig. 3.

The voltage inversion is not perfect, because a part of the energy stored on the piezoelectric elements
capacitance is lost in the switching network (electronic switch+inductance). These losses are modelled by an
electrical quality factor QI. The relation between QI and the voltage of the piezoelectric element before and
after the inversion process is given by Eq. (11). Because of this nonlinear process, a voltage magnification is
obtained and a phase shift appears between the displacement and the voltage which result in optimizing the
extracted energy. It was shown [8] that processing the voltage on each of its extrema was optimal in the case of
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sinusoidal single-frequency excitations. As shown in Fig. 2, the piezovoltage can be expressed by the sum of a
sinusoidal function and of a crenel function. When switching on each extremum, the crenel voltage generates a
mechanical force that is always opposite to the sign of the speed, resulting in a drastic damping effect. Since
the created force is proportional to the sign of the speed, it means that the dissipative mechanism is of the dry
friction type. A dry friction mechanism dissipates an energy which is unlike the viscous mechanism
independent of the frequency. The proposed approach works thus also on very low frequency.

In the case of the SSDS technique, the voltage is not inversed but simply cancelled. The SSDS technique
corresponds then to the case where g ¼ 0.

V afterð Þ ¼ �gV ðbeforeÞ ¼ �V ðbeforeÞ e
�p=2QI . (11)

3.3. Multimodal law by modes selection

In the case of multimodal excitations, the switching law consisting in inversing the voltage at each strain
extremum in the piezoelements is no more optimal. A smart multimodal law was proposed by Corr and Clark
[10] based on the idea of insuring a positive extracted power for selected controlled mode. The global extracted
power is derived from the global extracted energy and is given by Eq. (12). If M is the set of modes to be
controlled, the extracted power for the selected modes PSM is given by Eq. (13). The technique proposed by
Corr and Clark [10] consists in inversing the voltage at each time that the sign of

P
j2M aj _rj change, so that

PSM remains always positive.

PS ¼
XN

j¼1

aj _rjV , (12)

PSM ¼
X
j2M

aj _rjV . (13)

It can be noted that when the piezoelectric elements are open-circuited, the voltage V vary proportionally toPN
j¼1ajrj, as it can be derived from Eq. (7). Actually

PN
j¼1ajrj is proportional to the strain in the piezoelectric

elements. If all N modes are controlled, this method then consists in processing the piezovoltage at each strain
extremum, which corresponds to the earlier control law proposed for the SSD technique. It can also be noted
that this technique requires refined filtering devices in order to select modes to be controlled. Filtering
inevitably leads to time shifts that result in a lack of effectiveness.

3.4. Multimodal probabilistic-based control law

The approach proposed in this paper consists in optimizing the energy dissipated in the switching device
without taking into account any information related to the different modes of the structure.

The consumption of the switching device is always zero except during the voltage inversion when it is equal
to the difference of the electrostatic energy on the piezoelectric elements on the voltage inversion jump. The
energy dissipated in the switching device is then given by Eq. (14), where Vk is the piezovoltage just before the
kth inversion. It appears then that maximizing the consumption of the switching device corresponds to
maximizing the sum of the squared piezovoltage before each inversion. In other words, optimizing the
damping corresponds to finding the switch sequence that maximizes Eq. (14).Z t

0

VI dt ¼
1

2
C0

X
k

V 2
kð1� g2Þ. (14)

The probabilistic approach is based on the idea of letting the voltage reach a significant but statistically
probable value vmin before processing the voltage inversion. Since the time derivative of the extracted energy
cancels when the time derivative of the strain in the piezoelectric element vanishes, the extracted energy
reaches a local extremum at each extremum of the strain in the piezoelements. Since strain and voltage
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extrema occurs at the same time, the piezovoltage inversion is achieved when V 24v2min and V 2 reaches an
extremum.

The piezovoltage is a piecewise continuous function. Its evolution between two inversion processes is given
by Eq. (15), where tk and tk+1 are two consecutive switching times, �gV k is the voltage after the first voltage
inversion and rjk is the jth temporal coordinate of the displacement at instant tk:

for t 2�tk; tkþ1� V ðtÞ ¼ �gVk þ
1

C0

XN

j¼1

ajðrjðtÞ � rjkÞ: (15)

After the kth inversion time, V can be considered as a continuous function, whose cumulative distribution
function is defined by Eq. (16). vmin is defined after each voltage inversion so that the probability of observing
V24v2min is equal to PSW, where PSW is a fixed probability set by the user. This is summarized in Eq. (17),
where it is pointed out that vmin can be determined using the cumulative distribution function. Fig. 4 gives a
graphical representation of Eq. (17).

FV2 ðv2Þ ¼ P½V 2pv2�, (16)

P½V 24v2min� ¼ PSW ¼ 1� FV2 ðv2minÞ. (17)

The critical point of this approach consists in estimating the cumulative distribution function of the voltage
after each inversion. It is then easy to determine vmin. The evolution of the piezovoltage after the kth inversion
time can be estimated using Eq. (18) where it is assumed that the strain cumulative distribution function is a
slow varying function over the estimation time interval. The strain in the piezoelectric elements after the switch
is thus assumed to be similar to the strain in the piezoelectric elements before the switch. The estimation is
made using an observation time Tes of the strain. The value of Tes is set by the user. Its typical value is about
two times the period corresponding to the lower resonance frequency. This procedure is illustrated in Fig. 5.

V esðt
þÞ ¼ �gVk þ

1

C0

XN

j¼1

ajðrjðt
�Þ � rjkÞ with

tþ 2 tk; tk þ T es½ � ðfutureÞ;

t� 2 tk � T es; tk½ � ðpastÞ:

(
(18)

It is then assumed that the cumulative distribution function of the piezovoltage after the kth inversion time is
almost equal to the one of the estimated piezovoltage. This function can be derived from the estimated
piezovoltage as shown by Eq. (19) where tV2

espv2es
is the cumulative time where V 2

espv2es.

FV2 ðv2Þ � FV2
es
ðv2esÞ ¼ P½V 2

espv2es� ¼
tV2

espv2es

Tes
. (19)

Practically, the estimation of the piezovoltage can be made using an open-circuited additional piezoelement
bonded in the same area than the piezoelements used for the vibration control. This piezoelement is used as a
strain sensor. Its voltage V s is given by Eq. (20). Using a Tes recording of this voltage before the kth inversion,
the estimated piezovoltage can be estimated using Eq. (21) where VSk is the voltage on the sensor at the instant
PSW

1 

v² 

FV²(v²)

2
minv

Fig. 4. Determination of vmin.
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tk 

t

t

V

Ves 

1

N

j j
j

rα
=
Σ

t

t

V

1

N

j j
j

rα
=

Σ

t-
 Past 

Tes

t+
 Future 

Tes

t-
 Past 

Tes

t+
 Future 

Tes

vmin

Ves

tk+1

tk 

Estimation of the voltage after tk Calcul of vmin Estimation of the voltage after tk+1 Etc.

Ves

Fig. 5. Estimation of the piezovoltage after an inversion process.

vmin [PSW =1]
vmin [PSW =0+]VM

V

Vm

t

1 

FV ² (v²)

2
mV 2

MV v²

Fig. 6. Probabilistic approach in the case of a monomodal excitation.
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tk. It is clear that Eq. (21) is strictly equivalent to Eq. (18), thus this technique can be easily implemented and
does not require any filtering device.

Vs ¼
1

C0

XN

j¼1

ajrj, (20)

V esðt
þÞ ¼ �gVk þ VSðt

�Þ � VSk. (21)
3.5. Single frequency: a particular case of the probabilistic approach

In the case of a monomodal excitation and provided that PSW40, the probabilistic approach basically leads
to inverse the voltage at each displacement extremum, i.e. at each voltage extremum. This is illustrated in
Fig. 6. The former SSDI control law developed on single frequency signals, which consists in inversing the
voltage on each voltage extremum [8–10], appears then to be a particular case of the probabilistic approach.

4. Simulations results

In this section, the probabilistic approach is applied on a three modes model of a cantilever beam with
piezoelectric patches and compared to the multimodal law by mode selection. Simulations are derived from
numerical time domain integrations of Eqs. (6) and (7). Calculations are made using a fourth-order
Runge–Kutta algorithm with a constant integration time step.
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4.1. Characteristics of the model used for simulations

The model corresponds to a steel beam with piezoelectric elements bonded on its surface driven by a force
applied at its free end. Piezoelectric patches are modelled using P189 PZT (NAVY III type) ceramics
characteristics. This model roughly corresponds to a real experimental set-up, but the probabilistic approach
has not been experimentally tested yet. The first three bending modes are considered. The main characteristics
of this structure are summarized in Table 6. The first three resonance frequencies as well as the corresponding
coupling coefficients and mode shapes (plotted in Fig. 7) were determined using a FEM simulation of the
structure. The parameters of the model can be deduced from these characteristics. They are detailed in Table 7.
4.2. Evaluation of the vibration control effectiveness

The effectiveness of the different vibration control laws will be evaluated using two criteria. The first one is
related to the displacement of the structure. It is considered the integral Iu of the squared displacement along
the x-axis and over the time. This double integral is equal to the sum of the integral over the time of the
squared displacement temporal coordinate rj, as shown in Eq. (22). The ratio of this double integral in the
controlled case and in the uncontrolled case is defined as the ‘displacement damping’ Au, defined by Eq. (23).
The displacement damping in dB is given by Eq. (24).

Iu ¼

Z t

0

Z L

0

uðx; tÞ2 dx dt ¼
XN

j¼1

Z t

0

rjðtÞ
2 dt, (22)
Table 6

Characteristics of the structure

Beam material Steel

Beam dimension 180� 90� 2mm3

Piezoelements material P189 (Navy III type)

Number of piezoelements 2

Piezoelement dimension 40� 90� 0.3mm3

Piezoelements position 5mm from clamped end

Piezoelements clamped capacitance C0 74.9 nF

Inversion quality factor QI 5

Resonance frequencies 56.4Hz, 353Hz, 990Hz

Squared coupling coefficients 0.0092, 0.0044, 0.0007

Mechanical quality factors 400, 400, 400

0 20 40 60 80 100 120 140 160 180
-1

-0.5

0

0.5

1

x [mm]

1φ

2φ

3φ

Fig. 7. Mode shapes of the structure.
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Table 7

Parameters of the model

First mode Second mode Third mode

MSj þMPj (g) 62.0 62.0 62.0

KSj þ KE
Pj (Nm�1) 7710 30 500 2 400 000

Cj (Nm�1 s�1) 0.0549 0.344 0.964

aj (NV�1) 0.00230 0.0100 0.0111

bj 1 1 1
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Au ¼
ðIuÞcontrolled

ðIuÞuncontrolled
, (23)

AudB ¼ 10 logðAuÞ. (24)

The second criterion is based on the mechanical energy of the structure. The integral IE of the structure
mechanical energy over the time is given by Eq. (25). The ‘energy damping’ is defined as the ratio of this
integral in the controlled case and in the uncontrolled case, as shown by Eq. (26). Its expression in dB is given
by Eq. (27).

IE ¼
1

2

XN

j¼1

ðMSj þMPjÞ

Z t

0

_r2j dtþ ðKSj þ KE
PjÞ

Z t

0

r2j dt

� �
, (25)

AE ¼
ðIEÞcontrolled

ðIEÞuncontrolled
, (26)

AEdB ¼ 10 logðAEÞ. (27)
4.3. Simulations for a pulsed excitation

In this section, a pulsed excitation is applied at the free end of the beam. Simulations are achieved using
both the probabilistic law and the multimodal law by modes selection. Calculations are performed for 20
periods of the first resonance frequency. The fixed integration time step is chosen so that there are 50 time
steps per period of the higher (the third) resonance frequency. In the case of the probabilistic law, simulations
are performed using a strain observation time Tes equal to twice the period corresponding to the lower
resonance frequency of the structure. This time must be large enough to get a realistic image of the strain but
must also be short enough to allow the technique to be sufficiently reactive. It appears that twice the period of
the lower resonance frequency is the best compromise, but taking Tes anywhere between one and three times
this period gives satisfactory results.

Fig. 8 shows the displacement and energy damping in dB using the probabilistic control law as a function of
PSW. When PSW is zero, both dampings are zero because vmin is chosen so that the probability of observing V

higher than vmin is zero. PSW ¼ 0 corresponds then to the uncontrolled case. When PSW ¼ 1 vmin is chosen so
that the probability of observing V higher than vmin is one which results in processing the voltage on each
strain extrema. It is shown that for an optimal value of PSW equal to 0.1 the displacement and energy damping
are optimized. The displacement damping reaches �7.7 dB and the energy damping �6.5 dB whereas it is �3.8
and �4.8 dB, respectively, when inversing the voltage on each strain extrema.

Fig. 9 shows a comparison between energy and displacement damping using both modes selection control
law and probabilistic law. Each possibilities of modes selection are considered. The subtitle 000 corresponds to
no mode controlled, 100 only first mode controlled, 111 all modes controlled, etc. The first plot shows the
energy damping. A bar is plotted for each considered control law. Each bar is composed of three patches. The
bottom patch represents the mechanical energy related to the first mode, the middle patch to the second mode
and the top patch to the third mode. It is shown that the best damping with the modes selection law is
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obtained when controlling both first and second modes. It reaches �5.4 dB whereas it is �6.5 dB using the
probabilistic approach with PSW ¼ 0.1. The second plot corresponds the displacement damping. It is shown
that controlling only the first mode gives the best displacement damping using the modes selection law. It
reaches �7.6 dB compared to �7.7 dB using the probabilistic approach.

Simulations show that both energy and displacement damping benefits from the probabilistic approach.
Moreover, this approach allows to optimize both energy and displacement criteria simultaneously, whereas
the controlled modes for optimal displacement and optimal energy damping are not the same using the modes
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selection law. Fig. 10 shows the normalized strain in the piezoelements and the piezovoltage versus time for
different representative control laws. Fig. 11 shows the corresponding displacement of the beam free end.
Main results in dB are summarized in Table 8.

The spectrum of the beam free end speed is plotted on Fig. 12. This figure illustrates the broadband
damping capability of the proposed approach. The probabilistic control law induces simultaneously 13.0, 9.3
and 3.4 dB speed reductions for the three considered modes, on a frequency band lying between 0 and 1200Hz.
Moreover, it illustrates that the major damping is obtained for the most energetic mode, which is the first one
in the considered case. More precisely, the damping performance is directly related to the energy converted on
a given mode, which is an increasing function of both the mechanical energy and the coupling coefficient
associated to this mode. This interesting feature is the main reason for the adaptability of the proposed
process.

Inversely, the control law by mode selection cannot present this character, since, at first the controlled
modes have to be selected naturally, and secondly, if all modes are selected, the process is performing best for
the third mode since the switching occurs at each extremum. Moreover, if only the first mode is selected, no
damping is achieved for the second and the third modes.
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Table 8

Simulation results for a pulsed excitation

Control Law AEdB AudB

Modes selection

000—without control 0 0

100 �3.45 �7.62

010 �1.43 �0.0461

001 �0.311 0.0145

110 �5.41 �5.06

101 �2.56 �3.78

011 �1.61 �0.0700

111—switch on each extremum �4.89 �3.81

Probabilistic—PSW ¼ 0.1 �6.50 �7.67

Bold numbers correspond to the highest damping for each technique (modes selection or probabilistic approach).
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4.4. Simulations for a white-noise excitation

In this section, a white-noise excitation is applied at the free end of the beam. The same simulations are
achieved as in the previous section. Calculations are performed for 200 periods of the first resonance
frequency, with the same time steps as previously.
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Figs. 13–16 show the same results as in the previous section. Using the probabilistic approach, it is shown in
Fig. 13 that the displacement and energy damping are optimized for almost the same value of PSW. The
optimized displacement and energy damping are �8.5 and �6.3 dB whereas it is �3.0 and �4.3 dB,
respectively, when switching on all strain extrema.

Fig. 14 shows a comparison of both modes selection law and probabilistic law when PSW ¼ 0.1. When using
the modes selection law, it is shown that the best energy damping is obtained when controlling the first and the
second modes. It reaches then �5.1 dB which is not as good as the �6.3 dB obtained with the probabilistic
approach. When considering the displacement, the best damping is obtained when controlling only the first
mode. It reaches then �8.8 dB which is slightly better than the �8.5 dB obtained with the probabilistic
approach. As in the previous section, these simulations show that the probabilistic approach allows to
simultaneously optimize both energy and displacement damping.

The normalized strain and the piezovoltage as well as the displacement of the beam free end are plotted in
Figs. 15 and 16, respectively. These figures are plotted for different representative control laws. Only a small
part of the whole simulated time is represented on these plots. Main results in dB are summarized in Table 9.

The spectrum of the beam free end speed is plotted on Fig. 17, for different control law, in the
case of a white-noise excitation. Qualitatively, the performance comparison is the same as in the pulse
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excitation case. Since the proposed probabilistic control law mainly addresses the highest resonance peaks of
the spectrum (weight by the corresponding coupling coefficient), the process leads to a levelled down
spectrum.

5. Conclusion

The novel multimodal probabilistic approach described in this paper is dedicated to the SSD technique. It
was shown that this control law allows to simultaneously optimize both displacement-based and energy-based
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vibration control criteria. It is much more effective than the original control law consisting processing the
piezovoltage on each strain extrema. Moreover, it is at least as efficient as the control law by modes selection
which cannot optimize simultaneously both displacement and energy damping. It can also be noted that
results obtained using the control law by modes selection are very likely overestimated; since simulations have
been done considering that the modes could be separated without inducing any time shift. Practically, filtering
devices have to be used. This necessarily induces time delay between the strain and the filtered voltage time
waveforms resulting in a lack of effectiveness of the switching sequence and a drop of the damping
performances. The probabilistic control law is also very easy to implement, since it does not require
any filtering device or any information related to the modes of the structure. Consequently, the pro-
posed approach is not sensitive to the boundary conditions or to any resonance frequencies drifts. The only
required information is the piezovoltage itself and the strain in the piezoelements which can be obtained
from an additional piezoelement used as sensor or from the processed voltage itself. Current work consists
in implementing this technique on a digital signal processor (DSP) and testing it on a real experimental
set-up.
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Table 9

Simulation results for a white-noise excitation

Control law AEdB AudB

Modes selection

000—without control 0 0

100 �3.64 �8.79

010 �1.08 0.42

001 �0.31 0.74

110 �5.11 �4.96

101 �2.70 �3.08

011 �1.14 0.62

111—switch on each extremum �4.27 �2.96

Probabilistic—PSW ¼ 0.1 �6.32 �8.49

Bold numbers correspond to the highest damping for each technique (modes selection or probabilistic approach).
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